Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.183
Filtrar
1.
Genome Res ; 34(3): 484-497, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38580401

RESUMO

Transcriptional regulation controls cellular functions through interactions between transcription factors (TFs) and their chromosomal targets. However, understanding the fate conversion potential of multiple TFs in an inducible manner remains limited. Here, we introduce iTF-seq as a method for identifying individual TFs that can alter cell fate toward specific lineages at a single-cell level. iTF-seq enables time course monitoring of transcriptome changes, and with biotinylated individual TFs, it provides a multi-omics approach to understanding the mechanisms behind TF-mediated cell fate changes. Our iTF-seq study in mouse embryonic stem cells identified multiple TFs that trigger rapid transcriptome changes indicative of differentiation within a day of induction. Moreover, cells expressing these potent TFs often show a slower cell cycle and increased cell death. Further analysis using bioChIP-seq revealed that GCM1 and OTX2 act as pioneer factors and activators by increasing gene accessibility and activating the expression of lineage specification genes during cell fate conversion. iTF-seq has utility in both mapping cell fate conversion and understanding cell fate conversion mechanisms.


Assuntos
Diferenciação Celular , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Diferenciação Celular/genética , Análise de Célula Única/métodos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Linhagem da Célula/genética , Transcriptoma , Análise de Sequência de RNA/métodos , RNA-Seq/métodos , Perfilação da Expressão Gênica/métodos , RNA Citoplasmático Pequeno/genética , RNA Citoplasmático Pequeno/metabolismo , Multiômica , Análise da Expressão Gênica de Célula Única
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38493338

RESUMO

In recent years, there has been a growing trend in the realm of parallel clustering analysis for single-cell RNA-seq (scRNA) and single-cell Assay of Transposase Accessible Chromatin (scATAC) data. However, prevailing methods often treat these two data modalities as equals, neglecting the fact that the scRNA mode holds significantly richer information compared to the scATAC. This disregard hinders the model benefits from the insights derived from multiple modalities, compromising the overall clustering performance. To this end, we propose an effective multi-modal clustering model scEMC for parallel scRNA and Assay of Transposase Accessible Chromatin data. Concretely, we have devised a skip aggregation network to simultaneously learn global structural information among cells and integrate data from diverse modalities. To safeguard the quality of integrated cell representation against the influence stemming from sparse scATAC data, we connect the scRNA data with the aggregated representation via skip connection. Moreover, to effectively fit the real distribution of cells, we introduced a Zero Inflated Negative Binomial-based denoising autoencoder that accommodates corrupted data containing synthetic noise, concurrently integrating a joint optimization module that employs multiple losses. Extensive experiments serve to underscore the effectiveness of our model. This work contributes significantly to the ongoing exploration of cell subpopulations and tumor microenvironments, and the code of our work will be public at https://github.com/DayuHuu/scEMC.


Assuntos
Cromatina , RNA Citoplasmático Pequeno , Análise da Expressão Gênica de Célula Única , Análise por Conglomerados , Aprendizagem , RNA Citoplasmático Pequeno/genética , Transposases , Análise de Sequência de RNA , Perfilação da Expressão Gênica
3.
J Affect Disord ; 349: 101-106, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163568

RESUMO

BACKGROUND: The significant role of long non-coding 7S RNA in controlling mitochondrial transcription highlights its importance in mitochondrial function. Considering the suggested connection between mitochondrial dysfunction and the onset of mental disorders, this study aimed to explore the potential involvement of 7S RNA in the context of depression/anxiety. RESULTS: A total of 181 patients in primary health care (age 20-64 years) with depression/anxiety and 59 healthy controls were included in the study. 7S RNA was measured using quantitative real-time PCR in plasma samples collected before (baseline) and after 8 weeks of treatment (mindfulness or cognitive-based behavioral therapy). Upon adjustment for age and sex, the baseline plasma levels of 7S RNA were significantly higher in patients than in healthy controls (p < 0.001). Notably, post-treatment, there was a significant reduction in 7S RNA levels (p = 0.03). These changes in 7S RNA were related to the treatment response, as indicated by HADS-D (Hospital Anxiety and Depression Scale) scores (ß = -0.04, p = 0.04), even after accounting for baseline scores and other cofounders. CONCLUSION: The findings of this study indicate an association between plasma 7S RNA levels and depression/anxiety, as well as treatment response. While further confirmatory analyses are necessary, plasma 7S RNA holds promise as a potential predictive biomarker for both depression/anxiety and the treatment response within these disorders.


Assuntos
Ansiedade , Depressão , RNA Citoplasmático Pequeno , Partícula de Reconhecimento de Sinal , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Depressão/genética , Depressão/terapia , Ansiedade/terapia , Mitocôndrias/genética , Atenção Primária à Saúde
4.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 255-269, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38186223

RESUMO

Thyroid cancer (TC) is a kind of cancer with high heterogeneity, which leads to significant difference in prognosis. The prognostic molecular processes are not well understood. Cancer cells and tumor microenvironment (TME) cells jointly determine the heterogeneity. However, quite a little attention was paid to cells in the TME in the past years. In this study, we not only reveal that endothelial cells (ECs) are strongly associated with the progress of papillary thyroid cancer (PTC) using single-cell RNA-seq (scRNA-seq) data downloaded from Gene Expression Omnibus (GEO) and WGCNA, but also screen 5 crucial genes of ECs: CLDN5, ABCG2, NOTCH4, PLAT, and TMEM47. Furthermore, the 5-gene molecular prognostic model is constructed, which can predict how well a patient will do on PD-L1 blockade immunotherapy for TC and evaluate prognosis. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrates that PLAT is decreased in TC and the increase of PLAT can restrain the migratory capacity of TC cells. Meanwhile, in TC cells, PLAT suppresses VEGFa/VEGFR2-mediated human umbilical vascular endothelial cell (HUVEC) proliferation and tube formation. Totally, we construct the 5-gene molecular prognostic model from the perspective of EC and provide a new idea for immunotherapy of TC.


Assuntos
RNA Citoplasmático Pequeno , Neoplasias da Glândula Tireoide , Humanos , Células Endoteliais , Prognóstico , Neoplasias da Glândula Tireoide/genética , RNA , Análise de Célula Única , Microambiente Tumoral/genética
5.
Arthritis Rheumatol ; 76(5): 751-762, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38130019

RESUMO

OBJECTIVE: The biologic diagnosis of primary Sjögren disease (SjD) mainly relies on anti-Ro60/SSA antibodies, whereas the significance of anti-Ro52/TRIM21 antibodies currently remains unclear. The aim of this study was to characterize the clinical, serological, biologic, transcriptomic, and interferon profiles of patients with SjD according to their anti-Ro52/TRIM21 antibody status. METHODS: Patients with SjD from the European PRECISESADS (n = 376) and the Brittany Diagnostic Suspicion of primitive Sjögren's Syndrome (DIApSS); (n = 146) cohorts were divided into four groups: double negative (Ro52-/Ro60-), isolated anti-Ro52/TRIM21 positive (Ro52+), isolated anti-Ro60/SSA positive (Ro60+), and double-positive (Ro52+/Ro60+) patients. Clinical information; EULAR Sjögren Syndrome Disease Activity Index, a score representing systemic activity; and biologic markers associated with disease severity were evaluated. Transcriptome data obtained from whole blood by RNA sequencing and type I and II interferon signatures were analyzed for PRECISESADS patients. RESULTS: In the DIApSS cohort, Ro52+/Ro60+ patients showed significantly more parotidomegaly (33.3% vs 0%-11%) along with higher ß2-microglobulin (P = 0.0002), total immunoglobulin (P < 0.0001), and erythrocyte sedimentation rate levels (P = 0.002) as well as rheumatoid factor (RF) positivity (66.2% vs 20.8%-25%) compared to other groups. The PRECISESADS cohort corroborated these observations, with increased arthritis (P = 0.046), inflammation (P = 0.005), hypergammaglobulinemia (P < 0.0001), positive RF (P < 0.0001), leukopenia (P = 0.004), and lymphopenia (P = 0.009) in Ro52+/Ro60+ patients. Cumulative EULAR Sjögren Syndrome Disease Activity Index results further confirmed these disparities (P = 0.002). Transcriptome analysis linked anti-Ro52/TRIM21 antibody positivity to interferon pathway activation as an underlying cause for these clinical correlations. CONCLUSION: These results suggest that the combination of anti-Ro52/TRIM21 and anti-Ro60/SSA antibodies is associated with a clinical, biologic, and transcriptional profile linked to greater disease severity in SjD through the potentiation of the interferon pathway activation by anti-Ro52/TRIM21 antibodies.


Assuntos
Autoantígenos , Interferons , RNA Citoplasmático Pequeno , Ribonucleoproteínas , Índice de Gravidade de Doença , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/imunologia , Feminino , Pessoa de Meia-Idade , Masculino , Ribonucleoproteínas/imunologia , Adulto , Autoanticorpos/imunologia , Idoso , Anticorpos Antinucleares/imunologia
6.
Gene ; 897: 148084, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104954

RESUMO

BACKGROUND: Disfunctional autophagy plays a pivotal role in Intervertebral Disc Degeneration (IDD) progression. however, the connection between Autophagy-related gene 9A (ATG9A) and IDD has not been reported. METHODS: Firstly, transcriptome datasets from the GEO and Autophagy-related genes (ARGs) from GeneCards were carried out using R. Following this, IDD-specific signature genes were identified through methods such as least absolute shrinkage and selection operator (LASSO), random forest (RF), and support vector machine (SVM) analyses. Validation of these findings proceeded through in vitro experiments, evaluation of independent datasets, and analysis of receiver operating characteristic (ROC) curves. Subsequent steps incorporated co-expression analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Set Enrichment Analysis (GSEA), and construction of competing endogenous RNA (ceRNA) network. The final section established the correlation between immune cell infiltration, ATG9A, and IDD utilizing the CIBERSORT algorithm and single-cell RNA (scRNA) sequencing data. RESULTS: Research identified 87 differentially expressed genes, with only ATG9A noted as an IDD signature gene. Analysis of in vitro experiments and independent datasets uncovered a decrease in ATG9A expression within the degeneration group. The area under the curve (AUC) of ATG9A exceeded 0.8 following ROC analysis. Furthermore, immune cell infiltration and scRNA sequencing data analysis elucidated the substantial role of immune cells in IDD progression. A ceRNA network was constructed, centered around ATG9A, included 4 miRNAs and 22 lncRNAs. CONCLUSION: ATG9A was identified as a diagnostic gene for IDD, indicating its viability as a effective target for therapy disease.


Assuntos
Proteínas Relacionadas à Autofagia , Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , RNA Citoplasmático Pequeno , Humanos , Algoritmos , Biologia Computacional , Degeneração do Disco Intervertebral/diagnóstico , Degeneração do Disco Intervertebral/genética , RNA-Seq , Proteínas Relacionadas à Autofagia/genética
7.
Cell Commun Signal ; 21(1): 325, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957625

RESUMO

BACKGROUND: Mechanism underlying the malignant progression of precancer to early-stage lung adenocarcinoma (LUAD) as well as their indolence nature remains elusive. METHODS: Single-cell RNA sequencing (scRNA) with simultaneous T cell receptor (TCR) sequencing on 5 normal lung tissues, 3 precancerous and 4 early-stage LUAD manifested as pulmonary ground-glass nodules (GGNs) were performed. RESULTS: Through this integrated analysis, we have delineated five key modules that drive the malignant progression of early-stage LUAD in a disease stage-dependent manner. These modules are related to cell proliferation and metabolism, immune response, mitochondria, cilia, and cell adhesion. We also find that the tumor micro-environment (TME) of early-stage LUAD manifested as GGN are featured with regulatory T (Tregs) cells accumulation with three possible origins, and loss-functional state (decreased clonal expansion and cytotoxicity) of CD8 + T cells. Instead of exhaustion, the CD8 + T cells are featured with a shift to memory phenotype, which is significantly different from the late stage LUAD. Furthermore, we have identified monocyte-derived macrophages that undergo a lipid-phenotype transition and may contribute to the suppressive TME. Intense interaction between stromal cells, myeloid cells including lipid associated macrophages and LAMP3 + DCs, and lymphocytes were also characterized. CONCLUSIONS: Our work provides new insight into the molecular and cellular mechanism underlying malignant progression of LUAD manifested as GGN, and pave way for novel immunotherapies for GGN. Video Abstract.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , RNA Citoplasmático Pequeno , Humanos , Lipídeos , Análise de Célula Única , Microambiente Tumoral
8.
Cell Rep Methods ; 3(8): 100563, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37671028

RESUMO

The advent of single-cell multi-omics sequencing technology makes it possible for researchers to leverage multiple modalities for individual cells and explore cell heterogeneity. However, the high-dimensional, discrete, and sparse nature of the data make the downstream analysis particularly challenging. Here, we propose an interpretable deep learning method called moETM to perform integrative analysis of high-dimensional single-cell multimodal data. moETM integrates multiple omics data via a product-of-experts in the encoder and employs multiple linear decoders to learn the multi-omics signatures. moETM demonstrates superior performance compared with six state-of-the-art methods on seven publicly available datasets. By applying moETM to the scRNA + scATAC data, we identified sequence motifs corresponding to the transcription factors regulating immune gene signatures. Applying moETM to CITE-seq data from the COVID-19 patients revealed not only known immune cell-type-specific signatures but also composite multi-omics biomarkers of critical conditions due to COVID-19, thus providing insights from both biological and clinical perspectives.


Assuntos
COVID-19 , RNA Citoplasmático Pequeno , Humanos , Multiômica , Pesquisadores
9.
Biol Chem ; 404(11-12): 1123-1136, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632732

RESUMO

Small non-coding RNAs (sncRNA) are involved in many steps of the gene expression cascade and regulate processing and expression of mRNAs by the formation of ribonucleoprotein complexes (RNP) such as the RNA-induced silencing complex (RISC). By analyzing small RNA Seq data sets, we identified a sncRNA annotated as piR-hsa-1254, which is likely derived from the 3'-end of 7SL RNA2 (RN7SL2), herein referred to as snc7SL RNA. The 7SL RNA is an abundant long non-coding RNA polymerase III transcript and serves as structural component of the cytoplasmic signal recognition particle (SRP). To evaluate a potential functional role of snc7SL RNA, we aimed to define its cellular localization by live cell imaging. Therefore, a Molecular Beacon (MB)-based method was established to compare the subcellular localization of snc7SL RNA with its precursor 7SL RNA. We designed and characterized several MBs in vitro and tested those by live cell fluorescence microscopy. Using a multiplex approach, we show that 7SL RNA localizes mainly to the endoplasmic reticulum (ER), as expected for the SRP, whereas snc7SL RNA predominately localizes to the nucleus. This finding suggests a fundamentally different function of 7SL RNA and its derivate snc7SL RNA.


Assuntos
RNA Citoplasmático Pequeno , Partícula de Reconhecimento de Sinal , Partícula de Reconhecimento de Sinal/genética , RNA , RNA Citoplasmático Pequeno/genética , RNA Citoplasmático Pequeno/metabolismo , RNA Mensageiro
10.
Semin Thromb Hemost ; 49(7): 702-708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37611624

RESUMO

Mitochondrial dysfunction is a recognized factor in the pathogenesis of deep vein thrombosis (DVT). The role of 7S RNA, a long noncoding RNA that plays an important role in mitochondrial function, in DVT remains unclear. In this study, we aimed to investigate the potential use of 7S RNA as a biomarker in DVT. Plasma samples were obtained from 237 patients (aged 16-95 years) with suspected DVT recruited in a prospective multicenter management study (SCORE) where 53 patients were objectively confirmed with a diagnosis of DVT and the rest were diagnosed as non-DVT. 7S RNA was measured using quantitative real-time polymerase chain reaction in plasma samples. The plasma expression of 7S RNA was significantly lower in DVT compared with non-DVT (0.50 vs. 0.95, p = 0.043). With the linear regression analysis, we showed that the association between the plasma expression of 7S RNA and DVT (ß = -0.72, p = 0.007) was independent of potential confounders. Receiver-operating characteristic curve analysis showed the area under the curve values of 0.60 for 7S RNA. The findings of the present study showed a notable association between 7S RNA and DVT. However, further investigations are needed to fully elucidate the exact role of 7S RNA in the pathophysiology of DVT and its diagnostic value.


Assuntos
RNA Longo não Codificante , RNA Citoplasmático Pequeno , Trombose Venosa , Humanos , RNA Longo não Codificante/genética , Estudos Prospectivos
11.
Nucleic Acids Res ; 51(2): e9, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36373664

RESUMO

Cells possess functional diversity hierarchically. However, most single-cell analyses neglect the nested structures while detecting and visualizing the functional diversity. Here, we incorporate cell hierarchy to study functional diversity at subpopulation, club (i.e., sub-subpopulation), and cell layers. Accordingly, we implement a package, SEAT, to construct cell hierarchies utilizing structure entropy by minimizing the global uncertainty in cell-cell graphs. With cell hierarchies, SEAT deciphers functional diversity in 36 datasets covering scRNA, scDNA, scATAC, and scRNA-scATAC multiome. First, SEAT finds optimal cell subpopulations with high clustering accuracy. It identifies cell types or fates from omics profiles and boosts accuracy from 0.34 to 1. Second, SEAT detects insightful functional diversity among cell clubs. The hierarchy of breast cancer cells reveals that the specific tumor cell club drives AREG-EGFT signaling. We identify a dense co-accessibility network of cis-regulatory elements specified by one cell club in GM12878. Third, the cell order from the hierarchy infers periodic pseudo-time of cells, improving accuracy from 0.79 to 0.89. Moreover, we incorporate cell hierarchy layers as prior knowledge to refine nonlinear dimension reduction, enabling us to visualize hierarchical cell layouts in low-dimensional space.


Assuntos
Análise por Conglomerados , Análise de Célula Única , RNA Citoplasmático Pequeno , Análise de Célula Única/métodos , Incerteza
12.
Clin. transl. oncol. (Print) ; 24(12): 2272-2284, dec. 2022.
Artigo em Inglês | IBECS | ID: ibc-216075

RESUMO

Lung cancer is one of the most common malignant tumors with growing morbidity and mortality worldwide. Several treatments are used to manage lung cancer, including surgery, radiotherapy and chemotherapy, as well as molecular-targeted therapy. However, the current measures are still far from satisfactory. Therefore, the current research should focus on exploring the molecular mechanism and then finding an effective treatment. Interestingly, we and others have embarked on a line of investigations focused on the mechanism of lung cancer. Specifically, lncRNA small nucleolar RNA host gene has been shown to be associated with biological characteristics and therapeutic resistance of lung cancer. In addition, small nucleolar RNA host genes may be used as diagnostic biomarker in the future. Herein, we will provide a brief review demonstrating the importance of small nucleolar RNA host genes in lung cancer, especially non-small cell lung cancer. Although lncRNA has shown a crucial role in tumor-related research, a large number of studies are needed to validate its clinical application in the future (AU)


Assuntos
Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , RNA Citoplasmático Pequeno/genética , Biomarcadores Tumorais
13.
Clin. transl. oncol. (Print) ; 24(12): 2395-2408, dec. 2022.
Artigo em Inglês | IBECS | ID: ibc-216086

RESUMO

Purpose Non-small cell lung cancer (NSCLC) is the major subtype of lung cancer, which is the leading cause of cancer death worldwide. Tumor-associated macrophages (TAMs) are one of the main non-tumor cells in the tumor microenvironment. Here, we investigated the effect of cancer cell-derived exosomal LINC00313 on the M2 macrophage differentiation in NSCLC and clarified its underlying mechanism. Methods Flow cytometry, Western blotting, ELISA and immunohistochemical staining were performed to identify the macrophage phenotype by detecting the expression of M2 markers. The expression levels of LINC00313 and miR-135a-3p were measured by qRT-PCR, and luciferase reporter assay was used to validate the binding of lncRNA to miRNA, and miRNA to the target gene STAT6. The mouse-xenograft models were established by subcutaneous injection of the NCl-H1299 cells with stable overexpression or knockdown of LINC00313. GW4869 was injected intra-tumorally after tumor implantation. Results It was found that the cancer cells promoted M2 macrophage differentiation by secreting exosomes. LINC00313 was overexpressed in H1299-derived exosomes, and its knockdown abolished the effect of H1299-induced M2 macrophage differentiation. LINC00313 sponged miR-135a-3p to increase the STAT6 expression, resulting in the M2 macrophage differentiation. LINC00313 promoted tumor progression and promoted the expression of M2 markers in isolated tumor macrophages. A novel regulatory mechanism of M2 macrophage differentiation in NSCLC was revealed. It was found that cancer cell-derived exosomal LINC00313 promoted M2 macrophage differentiation in NSCLC by up-regulating STAT6 as miR-135a-3p sponge. Conclusions This study provides a new mechanism and direction to prevent the M2 macrophage differentiation in NSCLC (AU)


Assuntos
Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , Macrófagos/patologia , Citometria de Fluxo , Imuno-Histoquímica , Ensaio de Imunoadsorção Enzimática , RNA Citoplasmático Pequeno/genética , Biomarcadores Tumorais , Diferenciação Celular
14.
Elife ; 112022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36264609

RESUMO

Functionally distinct subtypes/clusters of dorsal root ganglion (DRG) neurons may play different roles in nerve regeneration and pain. However, details about their transcriptomic changes under neuropathic pain conditions remain unclear. Chronic constriction injury (CCI) of the sciatic nerve represents a well-established model of neuropathic pain, and we conducted single-cell RNA-sequencing (scRNA-seq) to characterize subtype-specific perturbations of transcriptomes in lumbar DRG neurons on day 7 post-CCI. By using PirtEGFPf mice that selectively express an enhanced green fluorescent protein in DRG neurons, we established a highly efficient purification process to enrich neurons for scRNA-seq. We observed the emergence of four prominent CCI-induced clusters and a loss of marker genes in injured neurons. Importantly, a portion of injured neurons from several clusters were spared from injury-induced identity loss, suggesting subtype-specific transcriptomic changes in injured neurons. Moreover, uninjured neurons, which are necessary for mediating the evoked pain, also demonstrated cell-type-specific transcriptomic perturbations in these clusters, but not in others. Notably, male and female mice showed differential transcriptomic changes in multiple neuronal clusters after CCI, suggesting transcriptomic sexual dimorphism in DRG neurons after nerve injury. Using Fgf3 as a proof-of-principle, RNAscope study provided further evidence of increased Fgf3 in injured neurons after CCI, supporting scRNA-seq analysis, and calcium imaging study unraveled a functional role of Fgf3 in neuronal excitability. These findings may contribute to the identification of new target genes and the development of DRG neuron cell-type-specific therapies for optimizing neuropathic pain treatment and nerve regeneration.


Assuntos
Neuralgia , RNA Citoplasmático Pequeno , Ratos , Camundongos , Masculino , Feminino , Animais , Gânglios Espinais/metabolismo , Transcriptoma , Análise de Célula Única , Cálcio/metabolismo , Ratos Sprague-Dawley , Neuralgia/metabolismo , Neurônios/metabolismo , Hiperalgesia/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo
15.
Front Immunol ; 13: 1028440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311801

RESUMO

Purpose: To investigate the significance of macrophage infiltration to the prognosis of lung adenocarcinoma. Methods: R language bioinformatics analysis technology, was used to obtain macrophage infiltration-related module genes through WGCNA (Weighted Gene Co-Expression Network Analysis). Marker genes of macrophage subtypes were identified using single-cell sequencing of lung adenocarcinoma tissue. Risk score models were constructed and validated using external data cohorts and clinical samples. Results: Analysis of cohorts TCGA-LUAD, GSE11969, GSE31210, GSE50081, GSE72094 and GSE8894, revealed a negative correlation between macrophage infiltration and survival. Immunohistochemical analyses of clinical samples were consistent with these data. Based on cell-cluster-markers and TAMs-related-genes, TOP8 genes were obtained (C1QTNF6, CCNB1, FSCN1, HMMR, KPNA2, PRC1, RRM2, and TK1) with a significant association to prognosis. Risk score models including 9 factors (C1QTNF6, FSCN1, KPNA2, GLI2, TYMS, BIRC3, RBBP7, KRT8, GPR65) for prognosis were constructed. The efficacy, stability and generalizability of the risk score models were validated using multiple data cohorts (GSE19188, GSE26939, GSE31210, GSE50081, GSE42127, and GSE72094). Conclusions: Macrophage infiltration negatively correlates with prognosis in patients with lung adenocarcinoma. Based on cell-cluster-markers and TAMs-related-genes, both TOP8 genes (C1QTNF6, CCNB1, FSCN1, HMMR, KPNA2, PRC1, RRM2, TK1) and risk score models using C1QTNF6, FSCN1, KPNA2, GLI2, TYMS, BIRC3, RBBP7, KRT8, GPR65 could predict disease prognosis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , RNA Citoplasmático Pequeno , Humanos , Análise de Célula Única , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Adenocarcinoma de Pulmão/patologia , Prognóstico , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Proteínas de Transporte/genética , Proteínas dos Microfilamentos/genética , Colágeno/metabolismo
16.
Pathologie (Heidelb) ; 43(Suppl 1): 31-35, 2022 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-36222922

RESUMO

BACKGROUND: Ibrutinib improves the treatment of relapsed or refractory mantle cell lymphoma, a mature B cell neoplasm. However, relapses following treatment with this Bruton tyrosine kinase inhibitor occur frequently, and the outcome of affected patients is poor. OBJECTIVES: Single-cell RNA sequencing (scRNA-seq) can track trends in gene expression of mantle cell lymphoma cells across ibrutinib treatment and new therapeutic targets can be defined based on the detected resistance mechanisms. MATERIALS AND METHODS: The ibrutinib-sensitive mantle cell lymphoma cell line REC­1 was treated with ibrutinib for 6 h and 48 h. Droplet-based scRNA-seq was performed to examine the transcriptomic alterations of surviving cells using the 10× Genomics platform. Extracellular flux analysis and flow cytometry were applied to further study the observed adaptations to ibrutinib treatment. RESULTS: REC­1 harbored a subpopulation with potential for crosstalk with microenvironment and therefore greater risk for aggressiveness and drug resistance. Following ibrutinib treatment, NF-κB signaling was turned off. In contrast, the cells upregulated B-cell receptor genes and surface antigens such as CD52, and switched their metabolism to increased dependence on oxidative phosphorylation. CONCLUSIONS: Targeting oxidative phosphorylation or CD52 in combination with or as follow-up to ibrutinib might overcome resistance and provide improved prognosis for mantle cell lymphoma patients.


Assuntos
Linfoma de Célula do Manto , RNA Citoplasmático Pequeno , Humanos , Tirosina Quinase da Agamaglobulinemia/genética , Antígeno CD52 , Linfoma de Célula do Manto/tratamento farmacológico , Recidiva Local de Neoplasia/induzido quimicamente , Pirazóis/farmacologia , Pirimidinas/farmacologia , Análise de Célula Única , Microambiente Tumoral/genética
17.
Methods Mol Biol ; 2574: 41-121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36087198

RESUMO

Previous studies have demonstrated the regulatory functions of Ly49+CD8+ T cells toward self-reactive CD4+ T cells in mice. Recently, we found KIR+CD8+ T cells are the equivalent of mouse Ly49+CD8+ T cells in humans. They are increased in patients with autoimmune or infectious diseases as a negative feedback mechanism to suppress the arising pathogenic cells and maintain peripheral tolerance. Here, we describe the methods on how we characterize the KIR+CD8+ T cells from different diseases using single-cell RNA and TCR sequencing.


Assuntos
RNA Citoplasmático Pequeno , Linfócitos T Reguladores , Animais , Linfócitos T CD8-Positivos , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Análise de Célula Única
18.
Mediators Inflamm ; 2022: 4955761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909659

RESUMO

Interleukin- (IL-) 33 contributes to various inflammatory processes. IL-33/ST2 activation participates in systemic lupus erythematous via binding to the receptor of Suppression of Tumorigenicity 2 protein (ST2). However, whether IL-33/ST2 interferes with the nosogenesis of cutaneous lupus erythematosus (CLE) has not been reported so far. Herein, we proposed to disclose the impacts on IL-33/ST2 activation and Ro60 on CLE and their potential implications in the photosensitization of CLE cells. IL-33, ST2, and Ro60 in CLE patients' skin lesions were detected. Murine keratinocytes stimulated with or without IL-33 were irradiated by ultraviolet B (UVB), and the levels of Ro60 and inflammation markers were determined. Keratinocytes were cocultured with J774.2 macrophages and stimulated with IL-33 for analysis of chemostasis. The results identified that IL-33, ST2, and downstream inflammation markers were significantly upregulated in CLE lesions with Ro60 overexpression. Additionally, IL-33 treatment promoted the upregulation of Ro60 induced by UVB treatment in murine keratinocytes. Moreover, IL-33 stimulates keratinocytes to induce macrophage migration via enhancing the generation of the chemokine (C-C motif) ligands 17 and 22. Meanwhile, the silencing of ST2 or nuclear factor-kappa B (NF-κB) suppression abolished IL-33-induced upregulation of Ro60 in keratinocytes. Similarly, the inhibition of SOX17 expression was followed by downregulation of Ro60 in keratinocytes following IL-33 stimulation. In addition, UVB irradiation upregulated SOX17 in keratinocytes. Conclusively, the IL-33/ST2 axis interferes with Ro60-regulated photosensitization via activating the NF-κB- and PI3K/Akt- and SOX17-related pathways.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Lúpus Eritematoso Cutâneo , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Queratinócitos/metabolismo , Lúpus Eritematoso Cutâneo/complicações , Lúpus Eritematoso Cutâneo/genética , Lúpus Eritematoso Cutâneo/metabolismo , Camundongos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transtornos de Fotossensibilidade/etiologia , Transtornos de Fotossensibilidade/genética , Transtornos de Fotossensibilidade/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Citoplasmático Pequeno/genética , RNA Citoplasmático Pequeno/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Fatores de Transcrição SOXF/metabolismo , Raios Ultravioleta/efeitos adversos
19.
Cell ; 185(13): 2309-2323.e24, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35662414

RESUMO

The mitochondrial genome encodes 13 components of the oxidative phosphorylation system, and altered mitochondrial transcription drives various human pathologies. A polyadenylated, non-coding RNA molecule known as 7S RNA is transcribed from a region immediately downstream of the light strand promoter in mammalian cells, and its levels change rapidly in response to physiological conditions. Here, we report that 7S RNA has a regulatory function, as it controls levels of mitochondrial transcription both in vitro and in cultured human cells. Using cryo-EM, we show that POLRMT dimerization is induced by interactions with 7S RNA. The resulting POLRMT dimer interface sequesters domains necessary for promoter recognition and unwinding, thereby preventing transcription initiation. We propose that the non-coding 7S RNA molecule is a component of a negative feedback loop that regulates mitochondrial transcription in mammalian cells.


Assuntos
DNA Mitocondrial , Proteínas Mitocondriais , Animais , DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Dimerização , Humanos , Mamíferos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , RNA/metabolismo , RNA Mitocondrial , RNA Citoplasmático Pequeno , Partícula de Reconhecimento de Sinal , Transcrição Gênica
20.
Clin Transl Med ; 12(4): e782, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35474615

RESUMO

Single-cell RNA sequencing (scRNA-seq) is considered an important approach to understand the molecular mechanisms of cancer microenvironmental functions and has the potential for clinical and translational discovery and development. The recent concerns on the impact of scRNA-seq for clinical practice are whether scRNA can be applied as a routine measurement of clinical biochemistry to assist in clinical decision-making for diagnosis and therapy. Pushing single-cell sequencing into clinical application is one of the important missions for clinical and translational medicine (CTM), although there still are a large number of challenges to be overcome. The present Editorial as one of serials aims at overviewing the history of scRNA-seq publications in CTM, sharing the understanding and consideration of the cancer microenvironment at the single-cell solution and emphasising the objective of translating scRNA-seq into clinical application. The dynamic characteristics and patterns of single-cell identity, regulatory networks, and intercellular communication play decisive roles in the properties of the microenvironment, malignancy and migrative capacity of cancer cells, and defensive capacity of immune cells. The microenvironmental single-cell transcriptomic profiles and cell clusters defined by scRNA-seq have great value for exploring the molecular mechanisms of diseases and predicting cell sensitivities to therapy and patient prognosis.


Assuntos
Neoplasias , RNA Citoplasmático Pequeno , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , RNA Citoplasmático Pequeno/genética , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...